FIGURAS DE LOS EJERCICIOS DE FUERZAS EN EL ESPACIO

Ex. 2.71 Determine (a) the x, y, and z components of the 900-N force, (b) the angles θ_{x}, θ_{y}, and θ_{z} that the force forms with the coordinate axes.

Ex. 273

A gun is aimed at a point A located 35° east of north. Knowing that the barrel of the gun forms an angle of 40° with the horizontal and that the maximum recoil force is 400 N , determine (a) the x, y, and z components of that force, (b) the values of the angles θ_{x}, θ_{y}, and θ_{z} defining the direction of the recoil force. (Assume that the x, y, and z axes are directed, respectively, east, up, and south.)

Ex. 2.75 Cable $A B$ is 65 ft long, and the tension in that cable is 3900 lb .
Determine (a) the x, y, and z components of the force exerted by the cable on the anchor B, (b) the angles , $x \theta, y \theta$ and θ defining the direction of that force.

Ex. 2.76 Cable $A C$ is 70 ft long, and the tension in that cable is 5250 lb . Determine (a) the x, y, and z components of the force exerted by the cable on the anchor $C,(b)$ the angles $\theta x, \theta y$, and θz defining the direction of that force.

Ex. 2.79 Determine the magnitude and direction of the force:

$$
\mathbf{F}=(690 \mathrm{lb}) \mathbf{i}+(300 \mathrm{lb}) \mathbf{j}-(580 \mathrm{lb}) \mathbf{k} .
$$

Ex. 2.81 A force acts at the origin of a coordinate system in a direction defined by the angles $\theta x=75^{\circ}$ and $\theta z=130^{\circ}$. Knowing that the y component of the force is +300 lb , determine (a) the angle $\theta y,(b)$ the other components and the magnitude of the force.

